In this paper, the Bergman space on polydisc is defined.
定义了一类二维多圆柱上的带权Bergman空间,找到了这个函数空间的再生核,并利用它给出了在它上面的点值泛函的极值问题,进而得到了一个单位球上的混合模Bergman空间中函数的点值关于其模的估计。
In this paper, the difference of compact operator on p-Bloch space and little p-Bloch space of polydisc will be considered, and we will give a sufficient condition for the compactness of the difference of compact operator, and then prove it.
本文主要研究了(单位)多圆柱上p-Bloch空间之间及小p-Bloch空间之间的复合算子的差分形式,给出了它有界性和紧性的一个充分条件。
An improved arithmetic for multi-circle detection based on andomized Hough transformation;
基于RHT的多圆检测改进算法
By using of complex variable function and integral equation method, the antiplane multiple holes and cracks problem of half plane region is considered in this paper.
运用复变函数及积分方程方法,求解了半平面域多圆孔多裂纹反平面问题。
By the use of the method of complex variables and the method of integral equation, the crack problem for the antiplane multiple holes on a circular region of a solid is studied and is presented in this paper.
本文运用复变函数及积分方程方法,求解了圆形域多圆孔多裂纹反平面问题,建立了两种类型的基本解。
Bounded Hankel Products on the Bergman Space of the Polydisk;
多圆盘的Bergman空间上Hankel乘积
Compact Product of Toeplitz Operators on the Polydisk;
多圆盘上的Toeplitz算子的紧的乘积
Some sufficient and necessary conditions for the boundedness of a class of integral operators on mixed norm spaces on the polydisk are obtained.
将Kuren等人在多元单位开球算子方面结果进行推广,得到了多圆盘上混合范数空间上一类积分算子有界的充分必要条件。
Let U~n be unit multi-circular cylinder of n-dimensionality complex space C~n and φ=(φ_1,…,φ_n) be a holomorphic map from U~n to U~n.
设Un是n维复空间Cn中的单位多圆柱,φ=(φ1,…,φn)是Un到自身的一个全纯映射,讨论了复合算子Cφ在Lipschitz空间Lipα(Un)上的紧性,完善了文[1]的结果。
Discuss the boundedness and compactness of the weighted composition operator on Bloch type space in multi-circular cylinder domain.
讨论了多圆柱上Bloch型空间上加权复合算子的有界性和紧性,得到几个充要条件、几个充分条件或必要条件。
This thesis mainly deals with the Hilbert module over the polydisc.
本文主要讨论了多圆盘上的Hilbert模,及其相关的Toeplitz分析和几何分析。
本站部份资料来自网络或由网友提供,如有问题请速与我们联系,我们将立即处理!
Copyright © 2013-2024 杭州优配网络科技有限公司 All Rights Reserved 浙ICP备20019715号
免责声明:本站非营利性站点,以方便网友为主,仅供学习。合作/投诉联系QQ:1553292129