In the paper, we have discussed the problem of fractional programming for n homogeneous function.
本文研究了具有n次齐次函数形式的分式规划问题,利用变换,把求解这类分式规划问题转化为线性规划或者非线性规划问题求解,从而降低了求解问题的难度。
Preliminary discussion has also made to find the necessary condition for the scoring factor of the function Pdx+Qdy+Rdz=0 when P(x,y,z),Q(x,y,z),R(x,y,z) are homogeneous functions.
就微分形式P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz为某函数u(x,y,z)的全微分的积分因子进行了探讨,提出了积分因子的必要条件,以及P(x,y,z),Q(x,y,z),R(x,y,z)是齐次函数时,方程Pdx+Qdy+Rdz=0具有积分因子的充分条件进行了初步探讨。
A generalization of the homogeneous function concept is studied.
讨论了齐次函数概念的推广,并应用于求解二体问题·
In this paper,by reviewing the sales statistical data in the past and analyzing the commodities market potential,the author aims to fit out an appropriate demand function and set up models of commodities optimal markdown amplitude.
本文通过分析产品的市场潜力 ,根据历史销售的统计资料 ,拟合出合适的需求函数 ,建立了商品降价的最佳幅度模型 。
In this article we applied demand function theory to analyze demand of the whole nation people and the people of Chinese Towns in west , and establish single demand Function Model.
应用需求函数理论对我国及全国西部的城镇居民需求进行分析,运用最小二乘法建立了单方程需求函数模型。
According to the change of domestic water the demand and industrial water demand a water demand function is deduced.
介绍了由城镇供水生活用水需求弹性和工业用水需求弹性计算生活用水需求函数和工业用水需求函数的方法 ;以水厂最大利润为目标 ,建立了最优水价模型 ,推导了最优水价公式 ,并给出了一个算例说明模型的应用 。
A method to find all 3 homogeneous Bent functions of degree 2 in 6 Boolean variables is derived.
求出了F62上全部3次齐次Bent函数。
This paper concerns with the product of Toeplitz operators on the Bergman space with symbols in the quasihomogeneous functions.
本文使用Mellin变换作为工具,在Bergman空间上讨论了以拟齐次函数为符号的Toeplitz算子的乘积问题,得出了当拟齐次函数的度分别处于三种不同情况时,两个Toeplitz算子乘积仍是Toeplitz算子的充分必要条件。
Spreading of Euler Formula on Indifferential Homogeneous Functions;
欧拉公式在不可微齐次函数中的推广
There is a special class of functions which is particularly important in economics, namely the class of homogeneous functions.
有一种特殊类型的函数在经济学中特别重要,这就是齐次函数。
The Normal form and Finite determinancy of Semiquasihomogeneous Function Germs
半拟齐次函数芽的正规型和有限决定性
The traditional linear function should be displaced by nonlinear function because of the breakage of superposition principle.
由于叠加原理的破坏,主张将非线性生产函数替代传统线性齐次函数。
Highly Nonlinear Cubic Homogenous Plateaued Functions
高非线性度三次齐次Plateaued函数
AN ALGORITHM WITH QUADRATIC BEZIER FUNCTION FOR ONE DIMENSION OPTIMIZATION
利用二次贝齐尔函数的一维优化算法
Homogeneitisation principle and Green s function in ordinary differential equations;
常微分方程中的齐次化原理与Green函数
Strong Laws of Large Numbers for Functionals of Countable Nonhomogeneous Markov Chains
可列非齐次马氏链泛函的强大数定律
The Growth of Solutions of Non-homogeneous Linear Differential Equations with Meromorphic Coefficients;
亚纯函数系数非齐次线性微分方程解的增长性
The Solution of the Interlace Series Type Linear Even Differential Equation of Contain Negative One Number of Times Power Function;
负线性幂函数交错级数型线性齐次微分方程
Solve the GP Equation by the Homogeneous Balance Method
利用齐次平衡法求GP方程的Jacobi椭圆函数解
The Relationships between Solutions of a Class of Higher Order Non-homogeneous Differential Equations with Functions of Smaller Growth
一类高阶非齐次微分方程的解与小函数的关系
The Relations between Solutions of a Class of Higher Order Homogeneous Differential Equations with Functions of Smaller Growth
一类高阶齐次微分方程的解与小函数的关系
The Fix Point of the Derivatives of Solutions and Solutions of Higher Order Homogeneous Linear Differential Equations with Meromorphic Function Coefficents;
亚纯函数系数的高阶齐次线性微分方程解及其解的导数的不动点
On the Properties of Solutions of a Class of HigherOrder Homogeneous Linear Differential Equationswith Meromorphic Function Coefficents;
一类亚纯函数系数的高阶齐次线性微分方程解的性质
On the zero and hype-order of solutions of certain non-homogeneous differential equations with entire coefficients;
关于某类整函数系数高阶齐次线性微分方程解的级和零点
If the function is linearly homogeneous it is possible to derive several propositions of interest.
若函数是线性齐次的,可以推导出一些令人感兴趣的命题。
The form solution to the Mixed Problem of one dimension inhomogeneous diffusion equation was given through the method of undetermined function.
利用待定函数法给出了一维非齐次扩散方程混合问题的形式解。
本站部份资料来自网络或由网友提供,如有问题请速与我们联系,我们将立即处理!
Copyright © 2013-2024 杭州优配网络科技有限公司 All Rights Reserved 浙ICP备20019715号
免责声明:本站非营利性站点,以方便网友为主,仅供学习。合作/投诉联系QQ:1553292129