divisible

基本解释可分割的

网络释义

1)divisible,可分割的2)indivisible letter of credit,不可分割的信用证3)separable,可分4)separation,可分5)Divisible,可分6)separability,可分

用法和例句

Bivariate Nonseparable Scaling Function and Sampling Theorem onApproximation Subspace;

二维不可分尺度函数和相应逼近子空间上的采样定理

Characterization of Separable Bivariate Orthonormal Compactly Supported Wavelet Basis;

二元可分正交紧支集小波基的刻划

Twoparameter separable stochastic process is defined, and the existence of the process is proved.

给出了两参数随机过程可分性的有关定义,讨论了等价的两参数可分随机过程的存在性、两参数随机过程可分的一个充要条件及一致连续的一个充分条件。

The pmperties such as connection , separation etc in a de moorage quotient al- gebra of topology are investigated and a sufficient and necessary condition for de morgan quo- tient algebra of topology to be T1 is established .

探讨了德摩根商拓扑代数的连通性、可分性等一些拓扑性质,并建立了德摩根商拓扑代数为T1的一个充分必要条件。

Fair Divisible Off-line E-cash System Based on Elliptic Curves;

基于椭圆曲线的离线公平可分电子现金系统

Trustee- based Anonymity- revocable Fair Divisible E- cash System;

基于可信第三方的可撤销匿名性的公平可分电子现金系统

Through the study of Brands electronic cash scheme, this paper puts forward a trustee-based anonymity-revocable fair divisible e-cash system which is an applied electronic cash scheme, and whose correctness is proved via theory.

本论文在Brands电子现金方案的基础上进行深入研究,提出了一种实用的电子现金方案-可撤消匿名性的公平可分电子现金系统(Anonymity-revocable Fair Divisible e-cash system,简称AFDE),并进行了理论证明。

In this note,we give a representation of density matrix for a bipartite quantum system and a neces-sary condition for separability of density matrix of mixed states in a bipartite quantum system of arbitrary dimen-tion.

给出了二元量子系统密度矩阵的一种表示,并在此基础上给出了二元量子系统混态密度矩阵可分的一个必要条件。

Completion,separability and conjugate space of lpnm(1<p<∞) space and lpn△m(1<p<∞) space are discussed.

利用复数项级数的snm~rnm+p审敛原理,得到了lnmp(1

We have investigated the properties of entanglement by criterion of separability (non-entanglement) and equivalence of quantum states under local unitary transformations.

本论文从可分(非纠缠)性的判别及局域幺正变换下的不变量的等价类的角度来研究量子纠缠的性质。

最新行业英语

本站部份资料来自网络或由网友提供,如有问题请速与我们联系,我们将立即处理!

Copyright © 2013-2024 杭州优配网络科技有限公司 All Rights Reserved 浙ICP备20019715号

免责声明:本站非营利性站点,以方便网友为主,仅供学习。合作/投诉联系QQ:1553292129